Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The effect of Zn 1- x Sn x O y buffer layer thickness in 18.0% efficient Cd-free Cu(In,Ga)Se 2 solar cells

Identifieur interne : 000363 ( Main/Repository ); précédent : 000362; suivant : 000364

The effect of Zn 1- x Sn x O y buffer layer thickness in 18.0% efficient Cd-free Cu(In,Ga)Se 2 solar cells

Auteurs : RBID : Pascal:14-0003230

Descripteurs français

English descriptors

Abstract

The influence of the thickness of atomic layer deposited Zn1- x Sn x O y buffer layers and the presence of an intrinsic ZnO layer on the performance of Cu(In,Ga)Se2 solar cells are investigated. The amorphous Zn1- x Sn x OX y layer, with a [Sn]/([Sn] + [Zn]) composition of approximately 0.18, forms a conformal and in-depth uniform layer with an optical band gap of 3.3 eV. The short circuit current for cells with a Zn1- x Sn x O y layer are found to be higher than the short circuit current for CdS buffer reference cells and thickness independent. On the contrary, both the open circuit voltage and the fill factor values obtained are lower than the references and are thickness dependent. A high conversion efficiency of 18.0%, which is comparable with CdS references, is attained for a cell with a Zn1- x Sn x O y layer thickness of approximately 13 nm and with an i-ZnO layer. Copyright © 2012 John Wiley & Sons, Ltd.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:14-0003230

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">The effect of Zn
<sub> 1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
buffer layer thickness in 18.0% efficient Cd-free Cu(In,Ga)Se
<sub> 2 </sub>
solar cells</title>
<author>
<name sortKey="Lindahl, J" uniqKey="Lindahl J">J. Lindahl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="W Tjen, J T" uniqKey="W Tjen J">J. T. W Tjen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hultqvist, A" uniqKey="Hultqvist A">A. Hultqvist</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ericson, T" uniqKey="Ericson T">T. Ericson</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Edoff, M" uniqKey="Edoff M">M. Edoff</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Torndahl, T" uniqKey="Torndahl T">T. Törndahl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>751 21 Uppsala</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">14-0003230</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 14-0003230 INIST</idno>
<idno type="RBID">Pascal:14-0003230</idno>
<idno type="wicri:Area/Main/Corpus">000374</idno>
<idno type="wicri:Area/Main/Repository">000363</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">1062-7995</idno>
<title level="j" type="abbreviated">Prog. photovolt. : (Print)</title>
<title level="j" type="main">Progress in photovoltaics : (Print)</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amorphous material</term>
<term>Atomic layer method</term>
<term>Buffer layer</term>
<term>Buffer system</term>
<term>Cadmium sulfide</term>
<term>Conversion rate</term>
<term>Copper</term>
<term>Copper selenides</term>
<term>Energy gap</term>
<term>Fill factor</term>
<term>Gallium selenides</term>
<term>High efficiency</term>
<term>Indium selenides</term>
<term>Layer thickness</term>
<term>Open circuit voltage</term>
<term>Performance evaluation</term>
<term>Quaternary compound</term>
<term>Short circuit currents</term>
<term>Solar cell</term>
<term>Tin oxide</term>
<term>Zinc</term>
<term>Zinc oxide</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche tampon</term>
<term>Epaisseur couche</term>
<term>Cellule solaire</term>
<term>Evaluation performance</term>
<term>Matériau amorphe</term>
<term>Bande interdite</term>
<term>Courant court circuit</term>
<term>Système tampon</term>
<term>Tension circuit ouvert</term>
<term>Facteur remplissage</term>
<term>Rendement élevé</term>
<term>Taux conversion</term>
<term>Méthode couche atomique</term>
<term>Zinc</term>
<term>Cuivre</term>
<term>Oxyde de zinc</term>
<term>Séléniure de cuivre</term>
<term>Séléniure de gallium</term>
<term>Séléniure d'indium</term>
<term>Composé quaternaire</term>
<term>Sulfure de cadmium</term>
<term>Oxyde d'étain</term>
<term>ZnO</term>
<term>Cu(In,Ga)Se2</term>
<term>CdS</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Matériau amorphe</term>
<term>Zinc</term>
<term>Cuivre</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The influence of the thickness of atomic layer deposited Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
buffer layers and the presence of an intrinsic ZnO layer on the performance of Cu(In,Ga)Se
<sub>2</sub>
solar cells are investigated. The amorphous Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
OX
<sub> y </sub>
layer, with a [Sn]/([Sn] + [Zn]) composition of approximately 0.18, forms a conformal and in-depth uniform layer with an optical band gap of 3.3 eV. The short circuit current for cells with a Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
layer are found to be higher than the short circuit current for CdS buffer reference cells and thickness independent. On the contrary, both the open circuit voltage and the fill factor values obtained are lower than the references and are thickness dependent. A high conversion efficiency of 18.0%, which is comparable with CdS references, is attained for a cell with a Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
layer thickness of approximately 13 nm and with an i-ZnO layer. Copyright © 2012 John Wiley & Sons, Ltd.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>1062-7995</s0>
</fA01>
<fA03 i2="1">
<s0>Prog. photovolt. : (Print)</s0>
</fA03>
<fA05>
<s2>21</s2>
</fA05>
<fA06>
<s2>8</s2>
</fA06>
<fA08 i1="01" i2="1" l="ENG">
<s1>The effect of Zn
<sub> 1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
buffer layer thickness in 18.0% efficient Cd-free Cu(In,Ga)Se
<sub> 2 </sub>
solar cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LINDAHL (J.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>WÄTJEN (J. T.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>HULTQVIST (A.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>ERICSON (T.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>EDOFF (M.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>TÖRNDAHL (T.)</s1>
</fA11>
<fA14 i1="01">
<s1>Angstrom Solar Center, Solid State Electronics, Uppsala University, P.O. Box 534</s1>
<s2>751 21 Uppsala</s2>
<s3>SWE</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
<sZ>6 aut.</sZ>
</fA14>
<fA20>
<s1>1588-1597</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>26755</s2>
<s5>354000504265510040</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2014 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>36 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>14-0003230</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Progress in photovoltaics : (Print)</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>The influence of the thickness of atomic layer deposited Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
buffer layers and the presence of an intrinsic ZnO layer on the performance of Cu(In,Ga)Se
<sub>2</sub>
solar cells are investigated. The amorphous Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
OX
<sub> y </sub>
layer, with a [Sn]/([Sn] + [Zn]) composition of approximately 0.18, forms a conformal and in-depth uniform layer with an optical band gap of 3.3 eV. The short circuit current for cells with a Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
layer are found to be higher than the short circuit current for CdS buffer reference cells and thickness independent. On the contrary, both the open circuit voltage and the fill factor values obtained are lower than the references and are thickness dependent. A high conversion efficiency of 18.0%, which is comparable with CdS references, is attained for a cell with a Zn
<sub>1- x </sub>
Sn
<sub> x </sub>
O
<sub> y </sub>
layer thickness of approximately 13 nm and with an i-ZnO layer. Copyright © 2012 John Wiley & Sons, Ltd.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Couche tampon</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Buffer layer</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Capa tampón</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Epaisseur couche</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Layer thickness</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Espesor capa</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Matériau amorphe</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Amorphous material</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Material amorfo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Bande interdite</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Energy gap</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Banda prohibida</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Courant court circuit</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Short circuit currents</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Système tampon</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Buffer system</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Sistema amortiguador</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Tension circuit ouvert</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Open circuit voltage</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Facteur remplissage</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Fill factor</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Rendement élevé</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>High efficiency</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Rendimiento elevado</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Taux conversion</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Conversion rate</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Factor conversión</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Méthode couche atomique</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Atomic layer method</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Método capa atómica</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Zinc</s0>
<s2>NC</s2>
<s5>22</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Cuivre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Copper</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Cobre</s0>
<s2>NC</s2>
<s5>23</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde de zinc</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Zinc oxide</s0>
<s5>24</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Zinc óxido</s0>
<s5>24</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Séléniure de cuivre</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Copper selenides</s0>
<s2>NK</s2>
<s5>25</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>Séléniure de gallium</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="18" i2="3" l="ENG">
<s0>Gallium selenides</s0>
<s2>NK</s2>
<s5>26</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Séléniure d'indium</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="19" i2="3" l="ENG">
<s0>Indium selenides</s0>
<s2>NK</s2>
<s5>27</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Composé quaternaire</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Quaternary compound</s0>
<s5>28</s5>
</fC03>
<fC03 i1="20" i2="X" l="SPA">
<s0>Compuesto cuaternario</s0>
<s5>28</s5>
</fC03>
<fC03 i1="21" i2="X" l="FRE">
<s0>Sulfure de cadmium</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="ENG">
<s0>Cadmium sulfide</s0>
<s5>29</s5>
</fC03>
<fC03 i1="21" i2="X" l="SPA">
<s0>Cadmio sulfuro</s0>
<s5>29</s5>
</fC03>
<fC03 i1="22" i2="X" l="FRE">
<s0>Oxyde d'étain</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="ENG">
<s0>Tin oxide</s0>
<s5>30</s5>
</fC03>
<fC03 i1="22" i2="X" l="SPA">
<s0>Estaño óxido</s0>
<s5>30</s5>
</fC03>
<fC03 i1="23" i2="X" l="FRE">
<s0>ZnO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="24" i2="X" l="FRE">
<s0>Cu(In,Ga)Se2</s0>
<s4>INC</s4>
<s5>83</s5>
</fC03>
<fC03 i1="25" i2="X" l="FRE">
<s0>CdS</s0>
<s4>INC</s4>
<s5>84</s5>
</fC03>
<fN21>
<s1>006</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000363 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000363 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:14-0003230
   |texte=   The effect of Zn  1- x  Sn  x  O  y  buffer layer thickness in 18.0%  efficient Cd-free Cu(In,Ga)Se  2  solar cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024